Home
Class 11
MATHS
For the ellipse 25x^(2) + 9y^(2) - 150x...

For the ellipse `25x^(2) + 9y^(2) - 150x - 90y + 225=0` , find the eccentricity , centre , veritces , foci and axes (major , minor ).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem for the ellipse defined by the equation \( 25x^{2} + 9y^{2} - 150x - 90y + 225 = 0 \), we will follow these steps: ### Step 1: Rearranging the Equation Start by rearranging the ellipse equation to a standard form. We will group the \( x \) and \( y \) terms together. \[ 25x^{2} - 150x + 9y^{2} - 90y + 225 = 0 \] ### Step 2: Completing the Square Next, we will complete the square for both the \( x \) and \( y \) terms. 1. For \( x \): \[ 25(x^{2} - 6x) = 25[(x - 3)^{2} - 9] = 25(x - 3)^{2} - 225 \] 2. For \( y \): \[ 9(y^{2} - 10y) = 9[(y - 5)^{2} - 25] = 9(y - 5)^{2} - 225 \] Putting these back into the equation gives: \[ 25(x - 3)^{2} - 225 + 9(y - 5)^{2} - 225 + 225 = 0 \] This simplifies to: \[ 25(x - 3)^{2} + 9(y - 5)^{2} - 225 = 0 \] ### Step 3: Standard Form of the Ellipse Rearranging gives: \[ 25(x - 3)^{2} + 9(y - 5)^{2} = 225 \] Dividing through by 225: \[ \frac{(x - 3)^{2}}{9} + \frac{(y - 5)^{2}}{25} = 1 \] ### Step 4: Identifying Parameters From the standard form \(\frac{(x - h)^{2}}{b^{2}} + \frac{(y - k)^{2}}{a^{2}} = 1\): - Center \((h, k) = (3, 5)\) - \(a^{2} = 25 \Rightarrow a = 5\) - \(b^{2} = 9 \Rightarrow b = 3\) ### Step 5: Finding the Eccentricity The eccentricity \(e\) is calculated using the formula: \[ c = \sqrt{a^{2} - b^{2}} = \sqrt{25 - 9} = \sqrt{16} = 4 \] Thus, the eccentricity \(e\) is: \[ e = \frac{c}{a} = \frac{4}{5} \] ### Step 6: Finding Vertices The vertices are located at: \[ (3, 5 \pm a) = (3, 5 + 5) \text{ and } (3, 5 - 5) = (3, 10) \text{ and } (3, 0) \] ### Step 7: Finding Foci The foci are located at: \[ (3, 5 \pm c) = (3, 5 + 4) \text{ and } (3, 5 - 4) = (3, 9) \text{ and } (3, 1) \] ### Step 8: Identifying Axes - Major axis: Vertical (along the \(y\)-axis) - Minor axis: Horizontal (along the \(x\)-axis) ### Final Summary - **Eccentricity \(e\)**: \(\frac{4}{5}\) - **Center**: \((3, 5)\) - **Vertices**: \((3, 10)\) and \((3, 0)\) - **Foci**: \((3, 9)\) and \((3, 1)\) - **Major Axis**: Vertical (along \(y\)-axis) - **Minor Axis**: Horizontal (along \(x\)-axis)
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - C|8 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

For the ellipse 25 x ^(2) + 9y ^(2) -150-90y + 225 =0, the eccentricity e =

For the eliiipse 24x^(2)+9y^(2)-120x-90y+225=0 , the eccentricity is equal to

If the ellipse with equation 9x^2+25y^2=225 , then find the eccentricity and foci.

The eccentricity of the ellipse 25x^(2) + 16y^(2) - 150 x - 175 = 0 is

Show that 4x^(2) + 8x + y^(2) - 4y + 4 = 0 represents an ellipse. Find its eccentricity, co-ordinates of foci equations of major and minor axes and latus - rectum.

For the hyperbola 4x^(2) - 9y^(2) = 1 , find the axes, centre, eccentricity, foci and equations of the directrices.

Find the foci of the ellipse 25(x+1)^(2)+9(y+2)^(2)=225

Given the ellipse with equation x^(2) + 4y^(2) = 16 , find the length of major and minor axes, eccentricity, foci and vertices.