Home
Class 12
MATHS
If x = a cos^(3) theta, y = a sin ^(3) t...

If x = `a cos^(3) theta, y = a sin ^(3) theta` then `sqrt(1+((dy)/(dx))^(2))`=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If x =cos^3 theta, y = sin^3 theta then sqrt(1+((dy)/(dx))^2)=

If x= a cos^(3) theta, y= a sin^(3) theta , then 1 + ((dy)/(dx))^(2) is______

If x = a cos^(3) theta , y = a sin^(3) theta , then 1+((dy)/(dx))^(2) is _______

If x=a cos ^(3) theta and y = a sin^(3) theta then (dy)/( dx) =

If x= alpha cos ^(3) theta and y = alpha sin ^(3) theta, then 1 + ((dy)/(dx)) ^(2) is

If x=a\ cos^3theta,\ \ y=a\ sin^3theta , then sqrt(1+((dy)/(dx))^2)= (a) t a n^2theta (b) s e c^2theta (c) sectheta (d) |sectheta|

If x= a cos^(3) theta, y= b sin^(3) theta, " then "(dy)/(dx)= (b)/(a) tan theta .

If x=3cos theta-2cos^(3)theta,y=3sin theta-2sin^(3)theta, then (dy)/(dx) is

If x=3cos theta-cos^(3)theta y=3sin theta-sin^(3)theta find (dy)/(dx)