Home
Class 12
MATHS
If the circle x^(2) + y^(2) + 8x - 4y +...

If the circle ` x^(2) + y^(2) + 8x - 4y + c = 0 ` touches the circle ` x^(2) + y^(2) + 2x + 4y - 11 = 0 ` externally and cuts the circle ` x^(2) + y^(2) - 6x + 8y + k = 0 ` orthogonally then k =

Promotional Banner

Similar Questions

Explore conceptually related problems

If x + y+ k =0 touches the circle x ^(2) + y^(2) -2x -4y + 3 =0, then k can be

If x + y+ k =0 touches the circle x ^(2) + y^(2) -2x -4y + 3 =0, then k can be

If the circumference of the circle x^(2) + y^(2) + 8x + 8y - b = 0 is bisected by the circle x^(2) + y^(2) - 2x + 4y + a = 0 , then a + b =

If the circles x^(2) + y^(2) - 6x - 8y + 12 = 0 , x^(2) + y^(2) - 4x + 6y + k = 0 cut orthogonally, then k =

For the circles x^(2) + y^(2) - 2x + 3y + k = 0 and x^(2) + y^(2) + 8x - 6y - 7 = 0 to cut each other orthogonally the value of k must be

The locus of the centre of the circle which cuts the circles x^(2) + y^(2) + 4x - 6y + 9 = 0 " and " x^(2) + y^(2) - 5x + 4y + 2 = 0 orthogonally is

The locus of the centre of the circle which cuts the circles x^(2) + y^(2) + 4x - 6y + 9 = 0 " and " x^(2) + y^(2) - 4x + 6y + 4 = 0 orthogonally is

If the circle x ^(2) + y ^(2) - 6x - 8y+ (25 -a ^(2)) =0 touches the axis of ,y then a equals.

The circles x^2+y^2-6x-8y+12=0, x^2+y^2-4x+6y+k=0 , cut orthogonally then k=

The circles x^2+y^2-6x-8y+12=0, x^2+y^2-4x+6y+k=0 , cut orthogonally then k=