Home
Class 12
MATHS
If A a non singular matrix anA^T denotes...

If A a non singular matrix an`A^T` denotes the transpose of A then (A) `|A A^T|!=|A^2|` (B) `|A^T A|!=|A^T|^2` (C) `|A|+|A^T|!=0` (D) `|A|!=|A^T|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a non-singular matrix and A^(T) denotes the tranpose of A, then

If a non-singular matrix and A^(T) denotes the tranpose of A, then

If a square matrix A is equal to its transpose A^T , then A^T is called a

If A^(T) is the transpose of a square matrix A, then

If A is a non singular matrix such that A^(-1)=[[7,-2],[-3,1]] then (A^(T))^(-1) is :

Let A be a non-singular matrix.Show that A^(T)A^(-1) is symmetric iff A^(2)=(A^(T))^(2)

Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric if A^2=(A^T)^2

Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric iff A^2=(A^T)^2 .

Let A be a non-singular matrix.Show that A^(T)A^(-1) is symmetric if A^(2)=(A^(T))^(2)