Home
Class 12
MATHS
Show that the matrix A = (1)/(3)[(1,2,2...

Show that the matrix A = `(1)/(3)[(1,2,2),(2,1,-2),(-2,2,-1)]` is orthogonal, Hence, find `A^(-1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that A=1/3[(1,2,2),(2,1,-2),(-2,2,-1)] is an orthogonal matrix.

Show that A=(1)/(3)[{:(-1,2,-2),(-2,1,2),(2,2,1):}] is proper orthogonal matrix.

Show the A=(1)/(3)[(-1,2,-2),(-2,1,2),(2,2,1)] is proper orthogonal matrix.

Show that , A^(-1) = (1)/(3) [(-1,2,-2),(-2,1,-2),(2,2,1)] is a proper orthogonal matrix.

Show that, A = 1/3[[1,2,2],[2,1,-2],[-2,2,-1]] are orthogonal matrix and hence find A^(-1) .

If A=1/3{:[(1,2,2),(2,1,-2),(a,2,b)]:} is an orthogonal matrix, then

For the matrix A=[{:(1,2,2),(2,1,2),(2,2,1):}] . Show that A^2-4A-5I=0 Hence find A^(-1)

Show that , A = (1)/(sqrt2)[(1,1),(-1,1)] is a proper orthogonal matrix. Hence find A^(-1)