Home
Class 12
MATHS
यदि y^(x)=e^(y-x) हो,तो सिद्ध कीजिए कि- ...

यदि `y^(x)=e^(y-x)` हो,तो सिद्ध कीजिए कि-
`(dy)/(dx)=((1+logy)^(2))/(logy)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

(dy)/(dx)+y/x logy=y/x^2 (logy)^2

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx-1)

If e^y=y^x , prove that (dy)/(dx)=((logy)^2)/(logy-1)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)