Home
Class 11
MATHS
Sum of the values of x satisfying the eq...

Sum of the values of x satisfying the equation `log_3(5x-6)log_xsqrt3=1` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the values of x satisfying the equation 9(log_(8)x)^(3)+log_(8)(x^(11))=(log_(27)64)(log_(8)27)+18(log_(8)x)^(2) is greater than or equals to

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

The sum of all possible values of x satisfying the equation 6log_(x-1)10+log_(10)(x-1)=5

The product of all values of x satisfying the equations log_(3)a-log_(x)a=log_(x//3)a is :

The product of all values of x satisfying the equations log_(3)a-log_(x)a=log_(x//3)a is :

Number of value(s) of x satisfying the equation log_2 (log_3 (x^2)) =1 is/are (A) 0 (B) 1 (c) 2 (D) 3

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

The value of x satisfying the equation 2^(log3x)+8=3*x^(log_(9)4), is

The number of real values of x satisfying the equation.log_(5)(5^(x)-1)*log_(25)(5^(x+1)-5)=1 is :