Home
Class 12
MATHS
If [x] denotes the greatest integer func...

If [x] denotes the greatest integer function, then the domain of the function
`f(x)=sqrt((x-[x])/(log (x^(2)-x)))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer lt x then the domain of the function function f(x) =sqrt((4-x^2)/([x]+2)) is

If [.] denotes the greatest integer function then the domain of the real-valued function log[x+(1)/(2)]|x^(2)-x-2| is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

Let [x] denote the greatest integer <=x. The domain of definition of function f(x)=sqrt((4-x^(2))/([x]+2)) is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).