Home
Class 12
MATHS
If vectors veca and vecb are two adjacen...

If vectors `veca and vecb` are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is perpendicular to `veca` is (A) `vecb+(vecbxxveca)/(|veca|^2)` (B) `(veca.vecb)/(vecb|^2)` (C) `vecb-(vecb.veca)/(|veca|)^2)` (D) `(vecaxx(vecbxxveca))/(vecb|^20`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors veca and vecb are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is perpendicular to veca is (A) vecb+(vecbxxveca)/(|veca|^2) (B) (veca.vecb)/(|vecb|^2) (C) vecb-(vecb.veca)/(|veca|)^2veca (D) (vecaxx(vecbxxveca))/(|vecb|^2

The resolved part of the vector veca along the vector vecb is veclamda and that perpendicular to vecb is vecmu . Then (A) veclamda=((veca.vecb).veca)/veca^2 (B) veclamda=((veca.vecb).vecb)/vecb^2 (C) vecmu=((vecb.vecb)veca-(veca.vecb)vecb)/vecb^2 (D) vecmu=(vecbxx(vecaxxvecb))/vecb^2

Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2) = |(veca.veca)/(veca. vecb)(veca.vecb)/(vecb.vecb)|

If veca is perpendicular to vecb then the vector vecaxx[vecaxx{vecaxx(vecaxxvecb)}] is equla (A) |veca|^2vecb (B) |veca|vecb (C) |veca|^3vecb (D) |veca|^4vecb

If a and b are perpendicular vectors show that (veca+vecb)^2 = (veca-vecb)^2 . [(veca+vecb)^2 means (veca+vecb).(veca+vecb) , so does (veca-vecb)^2 .]

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]