Home
Class 12
MATHS
For x in (0,(5pi)/2) , define f(x)""=int...

For `x in (0,(5pi)/2)` , define `f(x)""=int_0^xsqrt(t)sint"dt"` Then f has : local maximum at `pi` and `2pi` . local minimum at `pi` and `2pi` local minimum at `pi` and local maximum at `2pi` . local maximum at `pi` and local minimum at `2pi` .

Promotional Banner

Similar Questions

Explore conceptually related problems

f has a local maximum at x = a and local minimum at x = b. Then -

Let f(x)=sinx-x" on "[0,pi//2] find local maximum and local minimum.

Find the points of local maxima and local minima, if any, and local maximum and local minimum values of f(x)=sin2x , where 0ltxltpi

Let f(x)=sinx-x" on"[0,pi//2] find local maximum and local minimum.

Let f(x)=sinx-x" on"[0,pi//2] find local maximum and local minimum.

Let f(x)=sinx-x" on"[0,pi//2] find local maximum and local minimum.

If f(x)=(sin^2x-1)^("n"),"" then x=pi/2 is a point of local maximum, if n is odd local minimum, if n is odd local maximum, if n is even local minimum, if n is even

If f(x)=(sin^2x-1)^("n"),"" then x=pi/2 is a point of local maximum, if n is odd local minimum, if n is odd local maximum, if n is even local minimum, if n is even

If f(x)=(sin^2x-1)^("n"),"" then x=pi/2 is a point of local maximum, if n is odd local minimum, if n is odd local maximum, if n is even local minimum, if n is even

Find the points of local maxima and local minima, if any, and local maximum and local minimum values of f(x)=2sinx-x , -pi/2ltxltpi/ 2