Home
Class 12
MATHS
Let A=[(0,2),(0,0)]and (A+1)^100 -100A=[...

Let `A=[(0,2),(0,0)]and (A+1)^100 -100A=[(alpha,beta),(gamma,delta)],` then `alpha+beta+gamma+delta=...`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let [1,3] be domain of f(x) .If domain of f(log_(2)(x^(2)+3x-2)) is [-alpha,-beta]uu[gamma ,delta]; alpha ,beta ,gamma ,delta>0 then the value of (alpha+beta+2 gamma+3 delta)/(17) is

If |((beta+gamma-alpha -delta)^4 , (beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4, (gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4, (alpha + beta-gamma-delta)^2,1)|=-k(alpha -beta)(alpha -gamma)(alpha-delta)(beta-gamma)(beta-delta)(gamma-delta) , then the value of (k)^(1//2) is ____

Prove that |2 alpha+beta+gamma+delta alphabeta+gammadelta alpha+beta+gamma+delta 2(alpha+beta)(gamma+delta) alphabeta(gamma+delta)+gammadelta(alpha+beta) alphabeta+gammadeltaalphabeta(gamma+delta)+gammadelta(alpha+beta)2alphabetagammadelta|=0

Prove that |(2,alpha+beta+gamma+delta,alphabeta+gammadelta),(alpha+beta+gamma+delta,2(alpha+beta)(gamma+delta),alpha beta(gamma+delta)+gamma delta(gamma+beta)),(alpha beta+gamma delta,alpha beta(gamma+delta)+gammadelta(alpha+beta),2alphabeta gamma delta)| = 0

If the circumcentre of triangle ABC is (alpha,beta,gamma) where A, B, C are ((1, 0, 0) (0, 1, 0) and (0,0,1) respectively then alpha+beta+gamma+=1 (b) alpha=beta gamma=1/3 (d) alpha=1

Prove that |{:(2,alpha+beta+gamma+delta,alphabeta +gammadelta),(alpha+beta+gamma+delta,2(alpha+beta)(gamma+delta),alphabeta(gamma+delta)+gammadelta(alpha+beta)),(alphabeta+gammadelta,alphabeta(gamma+delta)+gammadelta(alpha+beta),2alphabetagamma delta):}| =0

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|=-64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)(gamma-delta)

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|= -64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-delta)(gamma-delta)(gamma-beta)

Prove that |{:(2,,alpha+beta+gamma+delta,,alphabeta+gammadelta),(alpha+beta+gamma+delta,,2(alpha+beta)(gamma+delta),,alphabeta(gamma+delta)+gammadelta(alpha+beta)),(alphabeta+gammadelta,,alphabeta(gamma+delta)+gammadelta(alpha+beta),,2alphabetagammadelta):}|=0