Home
Class 8
MATHS
Using the given pattern, find the missin...

Using the given pattern, find the missing numbers. `1^2+2^2+2^2=3^2`
`2^2+3^2+6^2=7^2`
`3^2+4^2+12^2=13^2`
`4^2+5^2+[\_?]^2=21^2`
`5^2+[\_?]^2+30^2=32^2`
`6^2+7^2+[\_?]^2=[\_?]^2`

Text Solution

AI Generated Solution

To solve the problem step by step, we will analyze the given patterns and find the missing numbers. ### Step 1: Analyze the First Pattern The first equation is: \[ 1^2 + 2^2 + 2^2 = 3^2 \] Here, the third number (2) is the product of the first two numbers (1 and 2): \[ 1 \times 2 = 2 \] ...
Promotional Banner

Topper's Solved these Questions

  • SQUARES AND SQUARE ROOTS

    NCERT|Exercise EXERCISE 6.4|9 Videos
  • RATIONAL NUMBERS

    NCERT|Exercise EXERCISE 1.1|11 Videos
  • UNDERSTANDING QUADRILATERALS

    NCERT|Exercise EXERCISE 3.1|2 Videos

Similar Questions

Explore conceptually related problems

Using the given pattern,find the missing numbers: 1^(2)+2^(2)+2^(2)=3^(2)2^(2)+3^(2)+6^(2)=7^(2)3^(2)+4^(2)+12^(2)=13^(2)4^(2)+5^(2)+()^(2)=21^(2)5^(2)+()^(2)+30^(2)=31^(2)6^(2)+7^(2)+()^(2)=()^(2)

The value of the determinant =1^2 2^2 3^2 4^2 2^2 3^2 4^25^2 3^2 4^25^2 6^2 4^2 5^2 6^2 7^2 is equal to 1 b. 0 c. 2 d. 3

The nth term of the given sequence 3/ (1^ 2) ⋅ 5/ (1^ 2 + 2^ 2) ⋅ 7/ (1^ 2 + 2^ 2 + 3^ 2) ⋅ 9/ (1^ 2 + 2^ 2 + 3^ 2 + 4^ 2)

Find the missing term in the given series? 1,3,5, 7, 2, 4, 6,3,5, 7, 2,4, 5,7, 2,?

Find the sum (1^2)/(2)+(3^2)/(2^2)+(5^2)/(2^3)+(7^2)/(2^4)+….oo

2^5 - 3^4 + 4^3 - 5^2 + 7^2 = (6)^2 + sqrt?

Find the missing number in the given seires-3.4,-2.7,-2,-1.3,-0.6,?

What should come next in the following number sequence ? 2 2 3 2 3 4 2 3 4 5 2 3 4 5 6 2 3 4 5 6 1) 2 2) 7 3) 8 4) 3 5) None of these

Find the sum to n terms of the series: (3)/(1^(2).2^(2))+(5)/(2^(2).3^(2))+(7)/(3^(2).4^(2))+