Home
Class 12
MATHS
prove that tan^(-1) (sqrtx)= 1/2 cos^(-...

prove that ` tan^(-1) (sqrtx)= 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0,1]`

Text Solution

Verified by Experts

Let `sqrt(x)=tan thetaimpliestan^(2)theta`
`:. RHS=(1)/(2) cos^(-1)""((1-x)/(1+x)), " " x in [0,1]`
`=(1)/(2) cos^(-1)""((1-tan^(2) theta)/(1+tan^(2)theta))`
`=(1)/(2)cos^(-1)(cos2theta)=(1)/(2)(2theta)`
`=theta=tan^(-1)sqrt(x)=` LHS Hence Proved.
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1) sqrt(x) = (1)/(2) cos^(-1) ((1-x)/(1+x)), x in [0, 1]

prove that tan^(-1) sqrt x = 1/2 cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that tan^(-1) sqrt(x) =(1)/(2) cos^(-1) ((1-x)/(1+x)) , x in [0, 1]

Prove that tan^(-1)sqrtx = 1/2cos^(-1) ((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that : tan^(-1)sqrtx=1/2cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove that: quad tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in[0,1]