Home
Class 12
MATHS
lim(n->oo)1/2tan(x/2)+1/2^2tan(x/2^2)......

`lim_(n->oo)1/2tan(x/2)+1/2^2tan(x/2^2)....+1/2^ntan(x/2^n)` is equal to `lim_(n->oo) sum_(n=1)^n1/(2^n)tan(x/(2^n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)sin(x/2^n)/(x/2^n)

f(n)=lim_(x->0){(1+sin(x/2))(1+sin(x/2^2)).......(1+sin(x/2^n))}^(1/x) then find lim_(n->oo)f(n)

lim_(x rarr oo) (1+2/n)^(2n)=

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

Lim_(n to 0) sum_(x + 1)^(n) tan^(-1) (1/(2r^2)) equals

lim_(x rarr 2)sum_(n=1)^9x/(n(n+1)x^2+2(2n+1)x+4)

Lim_(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equal to-