Home
Class 12
MATHS
यदि (x+iy)^(3) = u + iv हो, तो सिध्द कीज...

यदि `(x+iy)^(3) = u + iv` हो, तो सिध्द कीजिए कि `(u)/(x) + (v)/(y) = 4(x^(2) - y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+iy)^(3)= u +iv , then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2)) .

If (x+yi)^(3)=u + vi , prove that (u)/(x) +(v)/(y) = 4(x^(2)-y^(2))

If (x+iy)^(3)=u+iv, then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2))

If (x+iy)^(3)=u+iv then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2))

If (x+iy)^(3) = u + iv , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iv , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If u=x/y^(2) - y/x^(2) , then

If (x + iy)^3 = u + iv , then show that : u/x+v/y=4 (x^2-y^2) .