Home
Class 12
MATHS
The greatest value of the function f(x) ...

The greatest value of the function `f(x) = x^(2)"log" (1)/(x) ` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest value of the function f(x)=tan^(-1)x-(1)/(2)log x in [(1)/(sqrt(3)),sqrt(3)] is

The greatest vaue of the function f(x) = cot^(-1) x + (1//2) log x " on " [1, sqrt3] is

The greatest value of the function log_(x) 1//9 - log_(3) x^(2) (x gt 1) is

let A be the greatest value of the function f(x)=log _(x) [x], (where [.] denotes gratest integer function) and B be the least value of the function g (x) = |sin x | +|cos x| , then :

let A be the greatest value of the function f(x)=log _(x) [x], (where [.] denotes gratest integer function) and B be the least value of the function g (x) = |sin x | +|cos x| , then :

Let A be the greatest value of the function f(x)=log_(x)[x], (where) denotes greatest integer function) and B be the least value of the function g(x)=|sin x|+|cos x|, then:

Difference between the greatest and the least values of the function f(x)=x(ln x-2) on [1,e^2] is

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

The set of values of x for which the function f(x) = log ( (x - 1)/(x + 2) ) is continous , is