Home
Class 12
MATHS
Find the condition so that the function ...

Find the condition so that the function `f(x)=x^(3)+ax^(2)+bx+c` is an increasing function for all real values of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= x^(3) + ax^(2) + bx + c is an increasing function for all real values of x then-

The condition that =x^(3)+ax^(2)+bx+c is an increasing function for all real values of 'x' is

condition that f(x)=x^(3)+ax^(2)+bx^(2)+c is anincreasing function for all real values of x' is

If y = x^3 - ax^2 + 48x + 7 is an increasing function for all real values of x, then a lies in

If f(x) =x^(3) +ax^(2)+bx +5 sin^(2) x is an increasing function on R, then

The function f(x)=x^(3)+ax^(2)+bx+c,a^(2)le3b has

Find the values of a for which the function f(x)=(a+2)x^(3)-3ax^(2)+9ax-a decreasing for all real values of x.

Find the values of b for which the function f(x)=sin x-bx+c is a decreasing function on R.