Home
Class 12
MATHS
IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] ...

IF `A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}]` then show that `adjA=3A^T` Also find `A^-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T . Also find A^-1 .

If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] then adjA=

If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j A=3A^T .

If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j\ A=3A^T .

If A=[[-1,-2,-2],[2,1,-2],[2,-2,1]], show that 3adjA=A^T.

If A=[{:(1,2,-1),(-1,1,2),(2,-1,1):}] then det(ad(adjA))=….

If A=1/3({:(-1,2,-2),(-2,1,2),(2,2,1):}) , show that "AA"^(T)=I_(3) .

If A=(1)/(3){:[(-1,2,-2),(-2,1,2),(2,2,1)] show that "AA"^(T)=I .

Find the adjoint of the matrix A = [(-1,-2,-2),(2,1,-2),(2,-2,1)] and hence show that A (AdjA) = |A | I_3