Home
Class 9
MATHS
Prove that : (iii) (yz)^(log(y/z))(zx)...

Prove that :
(iii) `(yz)^(log(y/z))(zx)^(log(z/x))(xy)^(log(x/y)) = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If m is the geometric mean of ((y)/(z))^(log(yz)),((z)/(x))^(log(zx))"and"((x)/(y))^(log(xy)) then what is the value of m?

Prove that yz^(log frac{y}{z}) *(zx)^(log frac{z}{x})* (xy)^(log frac{x}{y}) =1

The value of (yz)^(log y-log z)xx(zx)^(log z-log x)xx(xy)^(log x-log y) is

Prove that x^(log y - logz) xx y^(log z - logx) xx z^(log x - log y) = 1 .

Find the value of (yz)^(log y - log z) xx (zx)^(log z - log x) xx (xy)^(log x - log y) .

Prove that : log _ y^(x) . log _z^(y) . log _a^(z) = log _a ^(x)

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0