Home
Class 10
MATHS
If A, B, C are the angles of DeltaABC th...

If A, B, C are the angles of `DeltaABC` then prove that `"cosec"^(2)((B+C)/2)-"tan"^(2)A/2=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are interior angles of DeltaABC , the prove that cosec((A+B)/2)=sec(C/2) .

If A, B and C are interior angles of a DeltaABC , then show that cot((B+C)/(2))=tan((A)/(2)) .

If A, B and C are interior angles of a DeltaABC , then show that cot((B+C)/(2))=tan((A)/(2)) .

If A, B, C are interior angles of triangle ABC, prove that :- 1+tan^2((B+C)/2)=cosec^2A/2 .

In DeltaABC , prove that: s^(2).tan(A/2)tan(B/2)tan(C/2)=Delta

If A ,\ B ,\ C are the interior angles of a triangle A B C , prove that tan(B+C)/2=cotA/2

In DeltaABC , prove that "cosec"(A)/(2)+"cosec"(B)/(2)+"cosec"(C)/(2) ge 6 .

In DeltaABC , prove that "cosec"(A)/(2)+"cosec"(B)/(2)+"cosec"(C)/(2) ge 6 .

In DeltaABC , prove that "cosec"(A)/(2)+"cosec"(B)/(2)+"cosec"(C)/(2) ge 6 .

In DeltaABC , prove that "cosec"(A)/(2)+"cosec"(B)/(2)+"cosec"(C)/(2) ge 6 .