Home
Class 11
MATHS
The value of OF 81^(1/(log5(3)))+27^(log...

The value of OF `81^(1/(log_5(3)))+27^(log_9(36))+3^(4/(log_7(9)))` is equal to (a) 49 ((b)625 (c) 216 (d) 890

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 81^((1)/(log_(5)(3)))+27^(log_(9)(36))+3^((4)/(log7)(9))

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))

Find the value of 81^((1/log_(5)3))+(27^(log_(9)36))+3((4)/(log_(9)9))

Evaluate: 81^(1//log_(5)3) + 27^(log_(9)36) + 3^(4//log_(l)9)

Evaluate: 81^(1//log_(s)3) + 27^(log_(g)36) + 3^(4//log_(l)9)