Home
Class 12
MATHS
If In=int0^(pi/4) tan^nx then lim(nrarro...

If `I_n=int_0^(pi/4) tan^nx` then `lim_(nrarroo)n(I_n+I_(n-2))` equals (A) `1/2` (B) `1` (C) `oo` (D) `0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n = int_0^(pi//4) tan^n x dx , then lim_(n to oo) n [I_n + I_(n -2)] equals :

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

I_n=int_0^(pi//4) tan^n x dx, then lim_(ntooo) n [I_n + I_(n+2)] is equal to (i)1/2 (ii)1 (iii)infty (iv) 0

I_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(n to infty) n[I_(n)+I_(n-2)] equals :

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =