Home
Class 11
MATHS
Prove that the distance of the roots of ...

Prove that the distance of the roots of the equation `|sintheta_1|z^3+|sintheta_2|z^2+|sintheta_3|z+|sintheta_4|=|3|` from z=0 is greater than `2//3.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the distance of the roots of the equation |sin theta_(1)|z^(3)+|sin theta_(2)|z^(2)+|sin theta_(3)|z+|sin theta_(4)|=3 from z=0 is greater than 2/3.

The general values of theta satisfying the equation 2sin^2theta-3sintheta-2=0 is (n in Z)dot

Prove the following {(1-sintheta) /costheta}^2=(1-sintheta) /(1+sintheta)

If sintheta_1+sintheta_2+sintheta_3=3, evaluate : costheta_1+costheta_2+costheta_3 .

if sintheta+costheta=3/2 then find sintheta.costheta

Prove that sintheta/(1+costheta)+sintheta/(1-costheta)=2/sintheta .

If 3costheta-4sintheta=2costheta+sintheta , find tantheta .

If sintheta_1+sintheta_2+sintheta_3=3," then "costheta_1+costheta_2+costheta_3 is equal to

If sintheta_1+sintheta_2+sintheta_3=3," then "costheta_1+costheta_2+costheta_3 is equal to

If sintheta_1+sintheta_2+sintheta_3=3, then costheta_1+costheta_2+costheta_3 is equal to