Home
Class 12
MATHS
The length of the chord joining the poin...

The length of the chord joining the points ( `4cos theta , 4 sin theta ) ` and `[ 4 cos ( theta + 60^(@)), 4 sin ( theta + 60^(@))]` of the circle `x^(2) +y^(2) =16` is `:`

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the chord joining the points (4 cos theta , 4 sin theta ) and (4 cos ( theta+ 60^@ ), 4 sin ( theta+ 60^@ )) of the circle x^2+y^2=16 is :

The length of the chord joining the points (4 cos theta, 4 sin theta) and (4 cos (theta+60^(2)),4 sin (theta+60^(@))) of the circle x^(2)+y^(2)=16 is

The length of the chord joining the points (4 cos theta 4 sin theta) and (4 cos (theta+60^@),4 sin (theta+60^@)) of the circle x^2+y^2=16 is :

The length ofthe chord joining the points (4cos theta,4sin theta) and [4cos theta+60^(@)),4sin(theta+60^(@))] of the circle x^(2)+y^(2)=16 is

( sin 4 theta - sin 2 theta )/(cos 4 theta + cos 2 theta )=

If x = 3 sin theta + 4 cos theta and y = 3 cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

4 sin theta * cos^(3) theta-4 cos theta * sin ^(3)theta= A) 4 cos theta B) cos 4 theta C) 4 sin theta D) sin 4 theta