Home
Class 12
MATHS
" 4."quad e^(x+y)=1+(dy)/(dx)...

" 4."quad e^(x+y)=1+(dy)/(dx)

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-y)(1-(dy)/(dx))=e^(x)

Solve e^(-x+y)(dy)/(dx)=1

If e^(y)(x+1)=1 ,then (dy)/(dx) is

Find the general solutions of the following differential equations. (i) (dy)/(dx) = e^(x+y) (ii) (dy)/(dx) = e^(y-x) (iii) (dy)/(dx) = (xy+y)/(yx+x) (iv) y(1+x)dx+x(1+y)dy = 0

Solve the following differential equation:- e^y (dy)/(dx) + (e^y)/(x+1) = (e^x)/(x+1) .

If e^x + e^y = e^(x+y) then (dy )/( dx) =……..

If y =( e^(x) + 1)/( e^(x)) ,then (dy)/(dx) =

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0