Home
Class 11
MATHS
If two equations x^2 +cx + ab = 0 and x^...

If two equations `x^2 +cx + ab = 0` and `x^2 +bx + ca = 0` have a common root, show that `a + b + c=0. `

Promotional Banner

Similar Questions

Explore conceptually related problems

If the equations x^(2) - ax + b = 0 and x^(2) + bx - a = 0 have a common root, then

If the equations x^2 + 2x + 3 = 0 and ax^2 + bx + + c = 0 have common root, then a : b : c is _____

If the equations ax^2 + bx + c = 0 and x^3 + x - 2 = 0 have two common roots then show that 2a = 2b = c .

If the equation ax^(2) + bx + c = 0 and 2x^(2) + 3x + 4 = 0 have a common root, then a : b : c

If the equation ax^(2) + bx + c = 0 and 2x^(2) + 3x + 4 = 0 have a common root, then a : b : c

IF x^2 +ax+bc=0 and x^2+bx +ca=0 have a common root , then a + b+ c=

If the equations x^(2) + ax + bc = 0 and x^(2) + bx + ca = 0 have a common root, then their other roots satisfy the equation

If the equation x^2+ax+bc=0" and " x^2-bx+ca=0 have a common root, then a+b+c =

If the equation x^2+ax+bc=0" and " x^2+bx+ca=0 have a common root, then a+b+c =