Home
Class 12
MATHS
" If "x=a(1+cos t),y=a(t+sin t)," find "...

" If "x=a(1+cos t),y=a(t+sin t)," find "(d^(2)y)/(dx^(2))" at "t=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is

If x=2cos t-cos2t,quad y=2sin t-sin2t find (d^(2)y)/(dx^(2)) at t=(pi)/(2)

If x=2cos t-cos2t,y=2sin t-sin2t,tind(d^(2)y)/(dx^(2)) at t=(pi)/(2)

x=a cos t,y=a sin t then (d^(2)(y))/(dx^(2)) at t=(pi)/(3),(pi)/(6),(pi)/(2),(pi)/(4)

If x=a(cos t+t sin t) and y=a(sin t-t cos t),then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is