Home
Class 9
MATHS
" 3) "(b^(2))/(sqrt(a^(2)+b^(2)+c))...

" 3) "(b^(2))/(sqrt(a^(2)+b^(2)+c))

Promotional Banner

Similar Questions

Explore conceptually related problems

(a+sqrt(a^(2)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)))

The value of (a+sqrt((a)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)) is

(sqrt(a^(2)-b^(2))+a)/(sqrt(a^(2)+b^(2))+b)-:(sqrt(a^(2)+b^(2))-b)/(a-sqrt(a^(2)-b^(2)))

Distance of the points (a,b,c) for the y axis is (a) sqrt(b^(2)+c^(2)) (b) sqrt(c^(2)+a^(2)) (c )sqrt(a^(2)+b^(2)) (d) sqrt(a^(2)+b^(2)+c^(2))

u=sqrt(a^(2)cos^(2)theta+b^(2)sin^(2)theta)+sqrt(a^(2)sin^(2)theta+b^(2)cos^(2)theta^(2)) then the difference between the maximum and minimum values of u^(2) is given by : (a) (a-b)^(2) (b) 2sqrt(a^(2)+b^(2))(c)(a+b)^(2) (d) 2(a^(2)+b^(2))

If (1+i)(1+2i)(1+3i)......(1+ni)=a+ib,then2xx5xx10...(1+n^(2)) is equal to sqrt(a^(2)+b^(2))(b)sqrt(a^(2)-b^(2))(c)a^(2)+b^(2)(d)a^(2)-b^(2)(e)a+b

If PQ be a chord of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 which subtends right angle at the centre then is distance from the centre is equal to (A) (ab)/(sqrt(a^(2)+b^(2)))(B)sqrt(a^(2)+b^(2))(C)sqrt(ab)(D) depends on slope of chord

If the line segment joining the points P (a,b) and Q(c,d) subtends an angle theta at the origin , then the value of costheta is a) (ab+cd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2))) b) (ab)/(sqrt(a^(2)+b^(2)))+(bd)/(sqrt(c^(2)+d^(2))) c) (ac+bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2))) d) (ac-bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))

If a cos theta-b sin theta=c, then a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)+c^(2))(b)+-sqrt(a^(2)+b^(2)-c^(2))(c)+-sqrt(c^(2)-a^(2)-b^(2))(d) None of these

The length of the perpendicular drawn from the point P(a,b,c) from z -axis is sqrt(a^(2)+b^(2)) b.sqrt(b^(2)+c^(2)) c.sqrt(a^(2)+c^(2)) d.sqrt(a^(2)+b^(2)+c^(2))