Home
Class 12
MATHS
lim(n->oo)n/((n !)^(1/ n)) is equal t...

`lim_(n->oo)n/((n !)^(1/ n))` is equal to `(i) e (ii) 1/e (iii) 1 (iv) int( 0 to 1)ln x dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (n) / ((n!) ^ ((1) / (n))) is equal to (i) e (ii) (1) / (e) (iii) 1 (iv) int (0rarr1) ln xdx

lim_ (n-> oo) (sqrt (n))/(sqrt (n)+sqrt (n+1)) = (i) 1 (ii) 1/2 (iii) 0 (iv) infty

I_n=int_0^(pi//4) tan^n x dx, then lim_(ntooo) n [I_n + I_(n+2)] is equal to (i)1/2 (ii)1 (iii)infty (iv) 0

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

lim_(n->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)