Home
Class 8
MATHS
" 23."y^(2)-xy(1-x)-x^(3)...

" 23."y^(2)-xy(1-x)-x^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Veriffy : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2))x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))

The differential equation of all conics whose centre lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre klies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre k lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre klies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The factors of x^(3)-1+y^(3)+3xy are (a) (x-1+y)(x^(2)+1+y^(2)+x+y-xy)( b) (x+y+1)(x^(2)+y^(2)+1-xy-x-y)( c) (x-1+y)(x^(2)-1-y^(2)+x+y+xy)(d)3(x+y-1)(x^(2)+y^(2)-1)

(x^(-3)-y^(-3))/(x^(-3)y^(-1)+(xy)^(-2)+y^(-3)x^(-1))=

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

Subtract: x^(2)y-(4)/(5)xy^(2)+(4)/(3)xy om (2)/(3)x^(2)y+(3)/(2)xy^(2)-(1)/(3)xy

Given that x,y in R: solve (4x^(2)+3xy)+(2xy-3x^(2))iota=(4y^(2)-(x^(2))/(2))+(3xy-2y^(2))