Home
Class 12
MATHS
Prove that 2tan^-1((1+x)/(1-x))+sin^-1((...

Prove that `2tan^-1((1+x)/(1-x))+sin^-1((1-x^2)/(1+x^2))=pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2

Prove that: tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

Prove that: tan^(-1)((1-x^(2))/(2x))+cot^(-1)((1-x^(2))/(2x))=(pi)/(2)

Prove that 2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))

Prove that: sin{tan^(-1)((1-x^(2))/(2x))+cos^(-1)((1-x^(2))/(1+x^(2)))}=1