Home
Class 11
MATHS
If cosalpha+cosbeta=0=sinalpha+sinbeta, ...

If `cosalpha+cosbeta=0=sinalpha+sinbeta,` then `cos2alpha+cos2beta` is equal to (a)`-2"sin"(alpha+beta)` (b) `-2cos(alpha+beta)` (c)`2"sin"(alpha+beta)` (d) `2"cos"(alpha+beta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha+cos beta=0=sin alpha+sinbeta, then cos2alpha+cos 2beta=

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to

If cos alpha+cos beta=0=sin alpha+sin beta , then cos 2 alpha+cos 2beta is equal to

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to (a)-2sin(alpha+beta)(b)-2cos(alpha+beta)(c)2sin(alpha+beta)(d)2cos(alpha+beta)

If cos alpha + cos beta =0 = sin alpha + sin beta , then cos 2 alpha + cos 2 beta is equal to

If cosalpha+cosbeta=0=sinalpha+sinbeta,cos2alpha+cos2beta is equal to a) -2sin(alpha+beta) b) 2cos(alpha+beta) c) 2sin(alpha-beta) d) -2cos(alpha+beta)

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

If cosalpha+cosbeta=0=sinalpha+sinbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta) .