Home
Class 12
MATHS
निम्नलिखित अवकल समीकरणों में से किस समीक...

निम्नलिखित अवकल समीकरणों में से किस समीकरण का व्यापक हल `y=c_1e^x+c_2e^(-x)` है ?
(i) `(d^2y)/(dx^2)+y=0` (ii) `(d^2y)/(dx^2)-y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y=a e^(2x)+b e^(-x) , show that, (d^2y)/(dx^2)-(dy)/(dx)-2y=0 .

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=

y=x+e^(x), then (d^(2)y)/(dx^(2))=

y = Ae^(x) + Be^(-2x) is a solution of the D.E. (d^(2)y)/(dx^(2) )+ (dy)/(dx) -2y = 0

If =3e^(2x)+2e^(3x) then prove that (d^(2)y)/(dx^(2))-5(dy)/(dx)+6y=0

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,