Home
Class 12
MATHS
" If "(sqrt(3)+i)^(n)=x(n)+iy(n)" and "n...

" If "(sqrt(3)+i)^(n)=x_(n)+iy_(n)" and "n" is a positive integer then the value of "x_(n-1)y_(n)-x_(n)y_(n-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_(n)+iy_(n)=(1+i)^(n)(n>0) and n is an integer then the value of x_(n-1)y_(n)-x_(n)y_(n-1)=

Solve (x-1)^(n)=x^(n), where n is a positive integer.

If 4^(x)*n^(2)=4^(x+1)*n and x and n are both positive integers, what is the value of n?

Solve (x - 1)^n =x^n , where n is a positive integer.

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the value of n(I_(n+1)+I_(n-1)) is,

int (dx)/(x^(n)(1+x^(n))^((1)/(n))),n=a positive integer.

If i=sqrt-1 and n is a positive integer, then i^(n)+i^(n+1)+i^(n+3_ is equal to

If x_(n) + iy_(n) = (1 + i)^(n) then x_(n - 1) y_(n) - x_(n) y_(n- 1) =