Home
Class 12
MATHS
" If "iz^(3)+z^(2)-z+i=0," then "|z|=...

" If "iz^(3)+z^(2)-z+i=0," then "|z|=

Promotional Banner

Similar Questions

Explore conceptually related problems

If 8iz^(3)+12z^(2)-18z+27i=0 then 2|z|=

Let z_(1), z_(2), z_(3) be the roots of iz^(3) + 5z^(2) - z + 5i = 0 , then |z_(1)| + |z_(2)| + |z_(3)| = _____________.

If iz^3+z^2-z+i= 0 , then abs(z) =

If iz^(3)+z^(2)-z+i=0 then show that |z|=1.

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to

If z in C and iz ^(3)+4z^(2)-z+4i=0 , then a complex root of this euquation having minimum magnitude is

Let A = {z : z in C, iz^(3) + z^(2) -z + i=0} and B ={z : z in C, |z|=1} , Then

If z is a complex number and iz^(3) + z^(2) - z + I = 0 , the value of |z| is

If 8iz^(3)+12z^(2)-18z+27i=0, (where i=sqrt(-1)) then