Home
Class 12
MATHS
If z(1),z(2),z(3) are the vertices of an...

If `z_(1),z_(2),z_(3)` are the vertices of an isoscles triangle right angled at `z_(2)`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1),z_(2),z_(3) are the vertices of an isosceles triangle right angled at z_(2), then prove that (z_(1))^(2)+2(z_(2))^(2)+(z_(3))^(2)=

Find the condition in order that z_(1),z_(2),z_(3) are vertices of an.isosceles triangle right angled at z_(2) .

If z_1 , z_2 ,z_3 are the vertices of an isosceles triangle right angled at z_2 , then prove that (z_1)^2+2(z_2)^2+(z_3)^2=2(z1+z3)z2

If the complex numbers z _(1) , z _(2) and z _(3) denote the vertices of an isosceles triangle, right angled at z _(1), then (z _(1) - z _(2)) ^(2) + (z _(1) - z _(3)) ^(2) is equal to A)0 B) (z _(2) + z _(3)) ^(2) C)2 D)3

If the complex numbers z_(1), z_(2)" and "z_(3) denote the vertices of an isoceles triangle, right angled at z_(1), " then "(z_(1)-z_(2))^(2)+(z_(1)-z_(3))^(2) is equal to

If z_(1),z_(2),z_(3) are the vertices of an equilateral triangle in the Argand plane, then (z_(1)^(2)+z_(2)^(2)+z_(3)^(3))=lambda(z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1)) holds true when :

If z_(1) , z_(2) , z_(3) are the vertices of an equilateral triangle with centroid at z_0 show that z_(1)^(2) + z_(2)^(2) + z_(3)^(2) = 3 z_(0)^(2)

If z_(1),z_(2),z_(3) are the vertices of an equilateral triangle,then value of (z_(2)-z_(3))^(2)+(z_(3)-z_(1))^(2)+(z_(1)-z_(2))^(2)

If z_(1),z_(2)andz_(3) are the vertices of an equilasteral triangle with z_(0) as its circumcentre , then changing origin to z_(0) ,show that z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0, where z_(1),z_(2),z_(3), are new complex numbers of the vertices.

If z_(1),z_(2)andz_(3) are the vertices of an equilasteral triangle with z_(0) as its circumcentre , then changing origin to z^(0) ,show that z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0, where z_(1),z_(2),z_(3), are new complex numbers of the vertices.