Home
Class 14
MATHS
If x=1/3y\ a n d\ y=1/2,\ t h e n\ x ...

If `x=1/3y\ a n d\ y=1/2,\ t h e n\ x : y : z` is equal to `1:2:6` b. `1:3:6` c. `2:4:6\ ` d. `3:2:1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A : B=1/2:1/3n a d B : C=1/2:1/3, t h e n A : B : C is equal to 1:2:6 b. 3:2:6 c. 2:3:3 d. 9:6:4

If 5x^2-13 x y+6y^2=, t h e n x : y is 2:1 on l y b. 3:5 on l y c. 5:3 or 1:2 d. 3:5 or 2:1

Comprehension 1 Let x ,\ y ,\ z in R^+&\ D=|xx^3x^4-1y y^3y^4-1z z^3z^4-1| If x!=y!=z\ &\ x ,\ y ,\ z are in GP and D=0,\ t h e n\ y\ is equal to- a. 1 b. 2 c. 4\ d. none of these

Comprehension 1 Let x ,\ y ,\ z in R^+&\ D=|xx^3x^4-1y y^3y^4-1z z^3z^4-1| If x!=y!=z\ &\ x ,\ y ,\ z are in A.P. and D=o,\ t h e n\ 2x^2z+x^2z^2 is equal to a. 1 b. 2 c. 3\ d. none of these

If \ ^(n+1)C_3=2.\ \ ^n C_2\ t h e n= 3 b. 4 c. 6 d. 5

x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b. 2 c. 3 d. 4

x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b. 2 c. 3 d. 4

If x^2+y^2=t -1/t and x^4+y^4=t^2+1/t^2 then (dy)/ (dx) is equal to a) 1/(x^2y^3) b) 1/(xy^3) c) 1/(x^2y^2) d) 1/(x^3y)

If the curve a y+x^2=7 and x^3=y cut orthogonally at (1,\ 1) , then a is equal to (a) 1 (b) -6 (c) 6 (d) 0

If the curve a y+x^2=7 and x^3=y cut orthogonally at (1,\ 1) , then a is equal to (a) 1 (b) -6 (c) 6 (d) 0