Home
Class 11
MATHS
The latus rectum of the hyperbola 9x ^(2...

The latus rectum of the hyperbola `9x ^(2) -16 y^(2) + 72x - 32y-16=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the latus rectum of the hyperbola 9x^(2) -16y^(2) +72x -32y- 16 =0 is

The length of the latus rectum of the hyperbola 9x^(2) -16y^(2) +72x -32y- 16 =0 is

Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola. 9x^(2)-16y^(2)+72x-32y-16=0

The latus rectum of a hyperbola 9x^(2) - 16y^(2) + 72x-32y-16 = 0 is :

the centre of the hyperbola 9x^(2 )- 16y^(2)+ 72 x - 32y -16=0 is

The equations of the latus recta of the hyperbola 9x^(2) -16y^(2) -18x -32y -151 =0 are

The equations of the latus recta of the hyperbola 9x^(2) -16y^(2) -18x -32y -151 =0 are

Find the axes, vertices, foci, eccentricity, equations of the directrices, and length of the latus rectum of the hyperbola 9x ^(2) - 16 y ^(2) = 144.