Home
Class 12
MATHS
Given f(x)={3-[cot^(-1)((2x^3-3)/(x^2))]...

Given `f(x)={3-[cot^(-1)((2x^3-3)/(x^2))]forx >0{x^2}cos(e^(1/x))forx<0` (where {} and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does not hold good? `f(0^-)=0` b. `f(0^+)=3` c. if `f(0)=0` , then `f(x)` is continuous at `x=0` d. irremovable discontinuity of `f` at `x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cot^(-1)((3x-x^(3))/(1-3x^(2))) and g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x rarr a)(f(x)-f(a))/(g(x)-g(a))

Let f(x)=cot^(-1)((x^(2)-x+1)/(2x-3x^(2))+(x^(2)-x+1)/(3-2x)) and if f((3)/(2))+f((5)/(7))+f((2)/(3))+f((7)/(5))=k pi then k is

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2 is :

Given f(x)=(1)/((x^(2)+2x+1)^((1)/(3))+(x^(2)-1)^((1)/(3))+(x^(2)-2x+1)^((1)/(3))) and E=f(1)+f(3)+f(5)+............+f(999)

(cos2x-1)cot^(2)x=-3sin x

The range of f(x)=cot^(-1)(log_(1/2)(x^(4)-2x^(2)+3)) is ( (pi)/(2) (3 pi)/(4) 0 (3 pi)/(4) pi) (0 (3 pi)/(4)