Home
Class 12
MATHS
If f(x)={[x]+sqrt({x}),x<1 1/([x]+{x}^2)...

If `f(x)={[x]+sqrt({x}),x<1 1/([x]+{x}^2),xgeq1` , then [where [.] and {.] represent the greatest integer and fractional part functions respectively] `f(x)` is continuous at `x=1` `f(x)` is not continuous at `x=1` `f(x)` is differentiable at `x=1` `(lim)_(xvec1)f(x)` does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={[x]+sqrt(x),x =1}

Find the points of local maxima or local minima,if any,using first derivative test,and local maximum or local minimum of f(x)=x sqrt(1-x),x>0

If f(x)=x(sqrt(x)-sqrt(x+1)) then f(x) is:

Let f be a function defined on R by f(x)=[x] + sqrt(x-[x]) then

If f(x)=x(sqrt(x)+sqrt(x+1)), then

If f(x)=x(sqrt(x)+sqrt((x+1)), then the function is

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

The domain of the function f(x)=1/[[x]]+sqrt((2-x)x) is