Home
Class 12
MATHS
If f(x)=(log)x(lnx),t h e nf^(prime)(x) ...

If `f(x)=(log)_x(lnx),t h e nf^(prime)(x)` at `x=e` is equal to `1/e` (b) e (c) 1 (d) zero

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_(x)(log_(e)x) , then f'(x) at x=e is equal to

If f(x)=(log)_(x^(2))(log x), then f'(x) at x=e is (a) 0(b)1(c)1/e (d) 1/2e

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If f(x)=log_(x^(2))(log x),quad then f'(x) at x=e is 0( b) 1 (c) (1)/(e) (d) (1)/(2)e

The minimum value of x(log)_(e)x is equal to e (b) 1/e(c)-1/e (d) 2e( e )e

If f(x)="cos"((log)_e x),t h e nf(x)f(y)-1/2[f(x/y)+f(x y)] has value (a) -1 (b) 1/2 (c) -2 (d) none of these

If f(x)=(x+1)^(cot x) be continuous at x=0, the f(0) is equal to 0( b) (1)/(e)(c)e(d) none of these

If f(x)=log_(e)[log_(e)x] , then what is f' (e) equal to?

f(x)=log x, interval [1,e]

If int(e^(x)-1)/(e^(x)+1)dx=f(x)+C, then f(x) is equal to