Home
Class 12
MATHS
If f(x)=x^2+x+3/4 and g(x)=x^2+a x+1 be ...

If `f(x)=x^2+x+3/4` and `g(x)=x^2+a x+1` be two real functions, then the range of `a` for which `g(f(x))=0` has no real solution is (A) `(-oo,-2)` (B) `(-2,2)` (C) `(-2,oo)` (D) `(2,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = x^2 increases on: (a) ( 0,oo) (b) (-oo,0) (c) (-7,-3) (d) (-oo,-3)

The function f(x)=log x-(2x)/(x+2) is increasing for all A) x in(-oo,0) , B) x in(-oo,1) C) x in(-1,oo) D) x in(0,oo)

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

Range of the function f(x)=(ln x)/(sqrt(x)) is (a) (-oo,\ e) (b) (-oo,\ e^2) (c) (-oo,2/e) (d) (-oo,1/e)

If f : [2,oo) to R be the function defined by f(x)=x^(2)-4x+5, then the range of f is

Find the number of integral vaues of 'a' for which the range of function f (x) = (x ^(2) -ax +1)/(x ^(2) -3x+2) is (-oo,oo),

If the domain of the function f(x)=x^(2)-6x+7 is (-oo,oo), then the range of the function is

If two real functions f and g such that f(x)=x^(2) and g(x)=[x] , then the value of f(-2)+g(-1/2) is

the interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing, is (a) ( -(oo) , (oo) ) (b) ( -(oo) , 0 ) (c) ( 2 , (oo) ) (d) ( 0 , 2 )