Home
Class 12
MATHS
If for a continuous function f,f(0)=f(1)...

If for a continuous function `f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e^x)e^(f(x))` , then `y^(prime)(0)` is equal to a. 1 b. 2 c. 0 d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If for a continuous function f,f(0)=f(1)=0,f'(1)=2 and g(x)=f(e^(x))e^(f(x)) then g'(0)=

Suppose for a differentiable function f,f(0)=0,f(1)=1 and f(0)=4=f'(1) If g(x)=f(e^(x))*e^(f(x)) then g'(0) is

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

If f(0)=f(1)=0,f'(1)=2 and y=f(e^(x))e^(f(x)), write the value of (dy)/(dx) at x=0

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

If f(x)=(x+1)^(cot x) be continuous at x=0, the f(0) is equal to 0( b) (1)/(e)(c)e(d) none of these