Home
Class 12
MATHS
Let f(x) =x[1/x]+x[x] if x!=0 ; 0 if x ...

Let `f(x) =x[1/x]+x[x] if x!=0 ; 0 if x =0` where[x] denotes the greatest integer function. then the correct statements are (A) Limit exists for x=-1 (B) f(x) has removable discontonuity at x =1 (C) f(x) has non removable discontinuity at x =2 (D) f(x) is discontinuous at all positive integers

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:(x[(1)/(x)]+x[x],if, x ne0),(0,if,x=0):} (where [x] denotes the greatest integer function). Then the correct statement is/are

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x) = [x^(-2) [x^(2)]] , (where [*] denotes the greatest integer function) x ne 0 , then incorrect statement

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] denotes the greatest integer function. Then,

If (x)={g^(x),x =0f(x)={g^(x),x =0 where [.1) denotes the greatest integer function. The f(x)

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in: