Home
Class 12
MATHS
" (iii) "(log x-4)/(log^(5)x)...

" (iii) "(log x-4)/(log^(5)x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P=(5)/((1)/(log_(2)x)+(1)/(log_(3)x)+(1)/(log_(4)x)+(1)/(log_(5)x))and (120)^(P)=32 , then the value of x be :

Let P=(5)/((1)/(log_(2)x)+(1)/(log_(3)x)+(1)/(log_(4)x)+(1)/(log_(5)x))and (120)^(P)=32 , then the value of x be :

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/( 8) ( log x - ( 4)/( x^(2)))+C C) (x^(4))/( 16) ( 4 log x -1) +C D) (x^(4))/( 16) ( 4 log x +1) + C

Evaluate: int(e^(5)(log)_(e)x-e^(4)(log)_(e)x)/(e^(3)(log)_(e)x-e^(2)(log)_(e^(x))x)dx

log x=(log3)+(log4)+(log5)

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

Find positive no.x which satisfy the equation log_(3)x*log_(4)x(log_(5)x-1)=log_(5)x*(log_(4)x+log_(3)x)

The domain of f(x) = log_(3)log_(4)log_(5)(x) is