Home
Class 12
MATHS
f is a strictly monotonic differentiabl...

`f` is a strictly monotonic differentiable function with `f^(prime)(x)=1/(sqrt(1+x^3))dot` If `g` is the inverse of `f,` then `g^(x)=` a.`(2x^2)/(2sqrt(1+x^3))` b. `(2g^2(x))/(2sqrt(1+g^2(x)))` c. `3/2g^2(x)` d. `(x^2)/(sqrt(1+x^3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x)/(sqrt(1-x^(2))),g(x)=(x)/(sqrt(1+x^(2))) then ( fog )(x)=

f(x)=1/abs(x), g(x)=sqrt(x^(-2))

g(x) is the inverse of function f(x), find (d^(2)f)/(dx^(2))(1),g(x)=x^(3)+e^((x)/(2))

If g is the inverse function of f an f'(x)=(x^(5))/(1+x^(4)). If g(2)=a, then f'(2) is equal to

int_( then )(x-1)(dx)/(x^(2)(sqrt(2x^(2)-2x+1)))=(sqrt(f(x)))/(g(x))+c

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

f(x) and g(x) are two differentiable functions in [0,2] such that f(x)=g(x)=0,f'(1)=2,g'(1)=4,f(2)=3,g(2)=9 then f(x)-g(x) at x=(3)/(2) is

f(x) and g(x) are two differentiable functions in [0,2] such that f(x)=g(x)=0,f'(1)=2,g'(1)=4,f(2)=3,g(2)=9 then f(x)-g(x) at x=(3)/(2) is