Home
Class 12
MATHS
x=sqrt(sin2t),quad y=sqrt(cos2t)...

x=sqrt(sin2t),quad y=sqrt(cos2t)

Promotional Banner

Similar Questions

Explore conceptually related problems

x=sqrt(sin 2t),y=sqrt(cos 2 t) find dy/dx

x=sqrt(sin 2t),y=sqrt(cos 2 t)

Find (dy)/(dx) if: x=a(cos t+(1)/(2)ln tan^(2)(t)/(2)) and y=a sin t.x=sin t sqrt(cos2t) and y=cost sqrt(cos2t)

If x=a^(sqrt(sin-1)t) and y=a^(sqrt(cos-1)t), then show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^sin^(-1t) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^(sin-1)t),y=sqrt(a^(cos-1)t) then show that (dy)/(dx)=-(y)/(x)

If x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(cos2t) show that dy/dx =0 at t=pi/6

Find dy/dx of x=sqrt(a^(sin^-1t) y=sqrt(a^(cos^-1t)

If x= sqrta^(sin^-1t), y = sqrt(a^(cos^-1t)) , show that dy/dx = -y/x , a > 0

Find (dy)/(dx) when : x=a(2t+sin2t), y=a(1-cos2t)