Home
Class 12
MATHS
" (c) "z=-1-i sqrt(3)quad " IN "...

" (c) "z=-1-i sqrt(3)quad " IN "

Promotional Banner

Similar Questions

Explore conceptually related problems

Principal argument of z=-1-i sqrt(3)

Let z _(1) = 1 + i sqrt3 and z _(2) = 1 + i, then arg ((z _(1))/( z _(2))) is

If z_(1)=1+i sqrt(3) , z_(2)=1-i sqrt(3), then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

If z_(1)=sqrt(3)+i sqrt(3) and z_(2)=sqrt(3)+i then the complex number ((z_(1))/(z_(2))) lies in the

If z=1/((1-i)(2+3i)), then |z| is (a) . 1 (b ). 1/sqrt(26) (c) . 5/sqrt(26) (d) . none of these

If z=((1+i sqrt(3))^(2))/(4i(1-i sqrt(3))) is a complex number then a.arg(z)=(pi)/(4) b.arg(z)=(pi)/(2)c|z|=(1)/(2)d.|z|=2

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals to : a) 3sqrt(3) b) sqrt(3) c) 3 d) 1/(3sqrt(3))

If z=(-1)/(2)+i(sqrt(3))/(2) , then 8+10z+7z^(2) is equal to a) -(1)/(2)-i(sqrt(3))/(2) b) (1)/(2)+isqrt(3)/(2) c) -(1)/(2)+i(3sqrt(3))/(2) d) (sqrt(3))/(2)i