Home
Class 12
MATHS
f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+...

`f(x)=sin^2x+cos^4x+2` and `g(x)=cos(cosx)+cos(sinx)` Also let period f(x) and g(x) be `T_1` and `T_2` respectively then

Promotional Banner

Similar Questions

Explore conceptually related problems

If fundamental period of the functions f(x)=sin^(2)x+cos^(4)x and g(x)=cos(sin2x)+cos(cos2x) are lambda_(1) and lambda_(2) respectively then (lambda_(1))/(lambda_(2))=

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

Let f(x)=cos x and g(x)=x^(2)

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)=sin x+cos x and g(x)=x^(2)-1 then g(f(x)) is invertible in the domain.

Let f(x) and g(x) be differentiable functions such that f(x)+ int_(0)^(x) g(t)dt= sin x(cos x- sin x) and (f'(x))^(2)+(g(x))^(2) = 1,"then" f(x) and g (x) respectively , can be

Let f(x)=|sin x|+|cos x|,g(x)=cos(cos x)+cos(sin x),h(x)={-(x)/(2)}+sin pi x, where {} representsfractional function,then the period of

f(x)=(cos^(2)x)/(1+cos x+cos^(2)x) and g(x)=k tan x+(1-k)sin x-x, where k in R,g'(x)=