Home
Class 12
MATHS
The maximum value of x^4e^ (-x^2) is (...

The maximum value of `x^4e^ (-x^2)` is (A) `e^2` (B) `e^(-2)` (C) `12 e^(-2)` (D) `4e^(-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of x^(4)e^(-x^(2)) is

The maximum value of x^(4)e^(-x^(2)) is (A) e^(2)(B)e^(-2)(C)12e^(-2)(D)4e^(-2)

The minimum value of 4e^(2x) + 9e^(-2x) is-

The minimum value of 4e ^(2x) + 9e^(-2x) is

The maximum value of (logx)/x is (a) 1 (b) 2/e (c) e (d) 1/e

The maximum value of (logx)/x is (a) 1 (b) 2/e (c) e (d) 1/e

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The maximum value of (log x)/(x) is (a) 1 (b) (2)/(e)(c) e (d) (1)/(e)